首页 资讯 水务 大气 固废 绿色发展 自然资源 人物 环保展会 企业 环保会客厅 国际资讯 政策 NGO

净气技术

旗下栏目: 净气技术 气候变化 大气污染

燃煤电厂脱硫废水零排放技术研究进展(2)

来源:亚洲环保网 作者: 人气: 发布时间:2018-04-12 15:58:47

  3.1.2MVR


MVR是将蒸发器排出的二次蒸汽通过压缩机经绝热压缩后送入蒸发器的加热室;二次蒸汽经压缩后温度升高,在加热室内冷凝释放热量,而料液吸收热量后沸腾汽化再产生二次蒸汽经分离后进入压缩机,循环往复,蒸汽得到充分利用。MVR浓缩液总悬浮固体(TDS)可达250g/L,电耗高达20~46.34kWh/m3废水[10]。


MVR相对于MED,具有占地面积小、运行成本较低、效率高的优势,更适用于零排放蒸发器。但若物料沸点超过蒸气压缩机设计要求,MVR便不适于该物料蒸发浓缩结晶的要求,须选MED或二者联用。广东省佛山市某电厂的2*600MV机组脱硫废水零排放处理采用了“两级卧式MVR蒸发器+两效卧式MED+结晶+盐干燥系统”,处理量为20m3/h;为避免浓盐水腐蚀设备MVR和MED需使用特殊不锈钢或钛材料,投资成本高昂,蒸发结晶系统投资4600万元(不含土建、安装费用)[11]。


3.2
膜浓缩 


目前,膜分离技术广泛用于火电厂脱硫废水的浓缩研究,以减少蒸发固化的处理量,而使零排放技术更经济可行。用于脱硫废水膜浓缩的膜分离技术有:反渗透(RO)、正渗透(FO)、电渗析(ED)和膜蒸馏(MD)。


3.2.1RO


RO过程能耗较低、适用性强、应用范围广,已广泛用于脱硫废水处理。然而,RO易发生膜污染与结垢。为防止RO膜污染与结垢,可采用超频震荡膜技术或高效RO工艺,但这需更强的预处理和更高pH[12],会提高运行成本;此外,即使采用震荡膜技术,经RO浓缩的浓水TDS只能达到90g/L[13],其TDS质量浓度远低于可实现结晶固化的250g/L水平[10],故单凭RO不能将盐水浓缩至可结晶固化水平。


3.2.2ED


  ED因耐受钙镁结垢能力较低,工程应用常用采用倒电极的方法减少ED的膜污染,该工艺称为倒极式电渗析(EDR)。与RO相比,ED和EDR所需预处理较少,且对含硅废水的耐受性较强[14]。此外,ED和EDR能将盐水浓缩至120g/L以上,甚至达到200g/L的水平,通常电耗介于7~15kWh/m3废水[15]。为避免浓差极化,如LOGANATHAN等报道EDR的淡水ρ(TDS)>10g/L,或使直接回用受限[16],但ED和EDR所产的淡水可以耦合其它方法加以回用。


3.2.3FO


FO属自发过程,但是汲取液的再生需额外能量。浙江长兴某电厂2*600MV机组是首个采用正渗透方法处理脱硫废水的工程案例,系统处理水量为22m3/h,其中脱硫废水18m3/h,经FO浓缩后的TDS可高达220g/L以上;同时,将FO产水与汲取液回收系统相结合,再经RO进一步除盐后,最终产水可回用于锅炉补给水[17]。但是,汲取液的再生复杂,整个工艺路线长,系统复杂,投资成本高。


  3.2.4MD


非挥发溶质水溶液的MD,仅水蒸汽能透过膜。MD可以利用火力发电厂丰富的低品质废热,且能近100%地截留非挥发性溶质。溶质若易结晶,则能被浓缩至过饱和而产生结晶[18]。MD能耗与操作方式息息相关,实际应用中,直接接触式膜蒸馏海水淡化的能耗可达40~45kWh/m3产水[19]。但是,由于火力发电厂丰富的低品质热源,热驱动的MD不能与电驱动技术直接比较能耗[10]。此外,目前尚缺少性能可靠,能够长时间稳定运行的商业化蒸馏膜。


上述4种膜浓缩技术对比如表1所示。其中,普通RO浓缩能够达到的含盐量有限,需要与FO、ED、MD进一步组合或增设蒸发器进行再浓缩;FO虽有工程实例,但工艺路线复杂,成本高;ED技术电厂低品废热优点,在脱硫废水零排放领域具有潜在应用前景,但仍缺少适于工业化稳定运行的蒸馏膜材料。4种膜浓缩技术都需要软化,抗污染能力一般MD>FO>ED>RO。


表1膜浓缩技术对比




4
脱硫废水的蒸发固化


蒸发固化可通过蒸发塘、结晶器和烟道处理法等技术蒸发浓缩后的脱硫废水,使废水中的水分汽化,废水中的杂质固化成结晶盐后外排处置,从而达到废水零排放的目的,是脱硫废水零排放的核心。


4.1
蒸发塘


蒸发塘(EP)属自然蒸发。目前EP多采用机械雾化蒸发器,可大幅度增加蒸发的速度,相同的水塘面积。雾化蒸发的速度是普通蒸发塘的14倍以上,极大地降低蒸发面积。EP-雾化蒸发技术处理废水电耗约为4kWh/m3废水。由于EP蒸发速度偏慢,且运行不当会造成环境污染,因此相关法规禁止没有设置前端污水处理的蒸发塘[20]。



4.2
结晶器
   



脱硫废水处理中,结晶过程即溶液过饱和形成晶核,晶核长成晶体与母液分离。结晶系统常包括结晶器、强制循环泵、离心机、干燥器、打包机等。实际工程中,结晶常与蒸发联用,涉及的技术也主要是MVR和MED。其中,MVR系统是一种应用广泛的结晶工艺,工艺成熟,耗电量约为50~80kWh/m3废水[21]。


广东河源某电厂脱硫废水经四效强制循环蒸发结晶罐产生能达到工业盐标准的结晶盐,但其占地面积大、基建费用高昂、运行能耗高[2]。结晶方式分为加晶种和不加晶种[22]。一般,结晶设备产生的结晶盐大多属杂盐,无法回用。不过,可据Na2SO4和NaCl的溶解度随温度的变化不在其他领域应用相对成熟,但目前还未见报道用于脱硫废水处理的工程实例;MD因其具有可利用火同,控制结晶器不同效的条件而实现NaCl和Na2SO4的分离[5]。



4.3
烟道蒸发
   



  烟道蒸发按其蒸发位置的不同,可分为直喷烟道余热蒸发和高温旁路烟气蒸发。直喷烟道余热蒸发原理为:在锅炉尾部空气预热器与除尘器之间的烟道内设置喷嘴,将预处理浓缩后的废水雾化;雾化液滴在高温烟气作用下快速蒸发,随烟气排出,而废水中的杂质则进入除尘系统随粉煤灰一起外排,从而达到零排放的目的[23]。河南焦作某电厂初期采用该法,运行情况表明,该工艺投资和运行成本较低[24]。然而,低低温电除尘技术的普及,使得直喷烟道余热蒸发可利用的有效烟道长度减小,狭窄的空间限制了蒸发的水量。


高温旁路烟气蒸发原理为:在高温旁路烟气蒸发器内,预处理浓缩后的脱硫废水被输送至高效雾化喷头,经雾化生成的微小液滴被从主烟道(SCR后,空预器前)引入的高温烟气所蒸发;雾化液滴中所含有的盐类物质在蒸发过程中持续析出,并附着在烟气中的粉尘颗粒上经旁路烟道出口进入除尘器,被除尘器捕集;蒸发后的水蒸气随烟气进入脱硫塔,在脱硫塔被冷凝后间接补充脱硫工艺用水,从而实现脱硫废水零排放。


该方法已经成功用于焦作万方电厂。脱硫废水高温旁路烟气蒸发系统结构简单,烟气流量流速可以控制,保障了液滴的完全高效蒸发;相关设备还可单独隔离与拆卸,建设简单,且利于系统后续的运行维护,对主烟道的影响较小。


综上所述,各种蒸发固化技术中,蒸发塘占地广、存在潜在污染等问题,难以推广应用;结晶器成本昂贵、运行复杂,尤其不适用于中小型电厂;直喷烟道余热蒸发受限于烟道结构,直烟道长度及烟气温度,在电厂新形态下应用受限;旁路烟气蒸发设备简单,自动化程度高,可利用烟气温度高,能保障废水的高效蒸发,对电厂其他设备影响较小,在脱硫废水零排放中优势显著,适合广泛推广。


5
脱硫废水零排放其他技术


除以上技术外,新的零排放技术和方法不断被研发,如SONG等在pH为6条件下,通过厌氧-缺氧工艺处理脱硫废水,硫酸盐去除率可达89%,且约76%的硫酸盐被转化成单质硫[25];QIAN等将脱硫废水作为廉价硫源,通MD-SANIR工艺实现脱硫废水与淡污水的互利共处理[26];为开拓脱硫废水以废治废及资源化应用提供了新的思路。



6

结语与展望

综上所述,需根据原水水质和后续处理工艺进水要求,确定预处理工艺与运行参数,是脱硫废水零排放处理的基础。浓缩减量可有效降低蒸发固化段处理负荷,保证后续系统的高效蒸发,是实现脱硫废水零排放的关键;相较于热法浓缩,膜法浓缩设备简单,占地面积小,能耗较低;尤其,电渗析浓缩和膜蒸馏浓缩颇具潜在应用前景。


蒸发固化将脱硫废水中的杂质以盐形式固化下来,最终实现脱硫废水零排放,是零排放处理的核心;高温旁路烟气蒸发无需额外热源、效率高、占地少、简单易于自动化控制,对电厂其他设备影响小,极具推广前景。


目前,我国脱硫废水零排放技术仍处于广泛研究与初步应用探索阶段。现有零排放技术的投资成本普遍较高且运行费用较大。如何组合现有工艺,扬长避短,实现低成本脱硫废水零排放,提高废水和矿物盐的综合利用率,将是今后脱硫废水零排放研究的重点。


来源:水处理技术

版权声明:本网注明来源为“国际环保在线”的文字、图片内容,版权均属本站所有,如若转载,请注明本文出处:http://www.huanbao-world.com 。同时本网转载内容仅为传播资讯,不代表本网观点。如涉及作品内容、版权和其它问题,请与本网站联系,我们将在第一时间删除内容。

首页 | 资讯 | 水务 | 大气 | 固废 | 绿色发展 | 自然资源 | 企业 | 环保展会 | 国际资讯

电脑版 | 移动版 | 联系我们

Copyright © 2017-2019 国际环保在线 版权所有
 粤ICP备17138624号-1