首页 资讯 水务 大气 固废 绿色发展 自然资源 人物 环保展会 企业 环保会客厅 国际资讯 政策 NGO

清洁能源

旗下栏目: 循环经济 清洁能源 绿色金融

王志轩:煤电利用小时下降是必然趋势(2)

来源:中国能源报 作者:王志轩 人气: 发布时间:2020-01-14 18:31:51

煤电设备利用率下降是电力转型的必然趋势

1.电力设备利用率下降国际上具有普遍性。

2.jpg

▲图1:世界和部分国家的发电设备利用率变化情况

图1为世界平均和几个典型国家发电设备平均利用率变化情况。从图中的趋势可以看出,2005年以来的10多年间,世界典型国家发电设备平均利用率都呈下降趋势,中国下降趋势较快,但总体上仍高于美国、澳大利并显著高于日本。中国曲线波动较大,从历史上来看,在1999年、2009年、2015年是低谷年,在2004年、2011年是高峰年,恰恰对应了当时电力相对富余和严重缺电的时段,而且,相对富余和严重缺电具有周期性特点,在快速发展期一定程度上呈现出互为因果关系的规律,即呈现出“缺电—加快建设速度—富余—减缓甚至停止建设—缺电”规律。如1999年政府有关部门提出3年不开工常规火电,出现了后来的严重缺电;中国从2012年以来才解决了长期缺电的历史,电力处于不缺电下的供需平衡状态,但是2011年却仍然是一个区域性、结构性缺电的“电荒”之年(与以前大面积缺电不同),由于中国长期受缺电之苦,所以短时“电荒”信号引起一轮大规模建设煤电和快速建设新能源发电热潮,从而引起了以煤为主整体发电能力相对过剩的情况,发电设备平均利用率处于历史最低水平。发电设备利用小时虽然近年来有所回升,但总体处于低水平,这是经济社会发展、电力发展、能源转型相互作用下的必然结果。

2.煤电设备平均利用小时5500小时是在计划经济时期、长期缺电状态、二元发电结构下新建燃煤电厂的设计条件,并不是任何发展阶段都适用的评价“标准”。

从1949年新中国成立到2018年,中国人均装机由0.0034千瓦到1360千瓦,年人均用电量由7.96千瓦时到4945千瓦时。由于缺乏资金、技术、设备、人才和经济发展对电力的需求大等原因,在70年中有60多年中处于缺电状态,到2014年左右起才总体上处于电力供需宽松状态。

在2010年以前,基于能源资源禀赋、经济发展水平和电力技术设备的产业化能力,中国电力结构主要是煤电、水电二元结构且以煤电为绝对主力。煤电发电量占比长期约为80%。在此大背景下,按年5500小时、日22小时用于计划经济及缺电时期作为新建煤电项目开展前期工作(包括项目可研、审批、设计等)的依据是合理的。前期工作采用的煤电设备平均利用小时,像煤源、煤种、煤质、水源等条件一样作为基础参数用来计算年发电量、用煤量,进而确定煤炭运输方式、储灰场容量、环境影响评价所需参数,以及计算费、税、利润、投资回报期等。当电厂投入运行后,由于各种条件都会发生变化,如对经营情况影响最大的煤源、煤质及煤价的变化、经济社会发展形势的变化(如国际金融危机)、可再生能源发电加速发展的变化等,对具体机组设备利用小时的影响是不可避免的。

从中国1978年~2018年分类型发电设备利用小时数(见图2)可以看出,煤电设备利用率在1996年以前基本上都在5500小时左右且比较平稳(见标注)。1998年以后在5000~6000小时之间波动,2012年之后显著下降并维持在4300小时左右。煤电设备利用小时的剧烈变化并下行的期间,也是煤电矛盾(反映在电煤价格和供应能力方面)剧烈波动期、经济发展由高速转为高中速为特征的新常态、能源电力清洁低碳转型开始、以及电力体制改革推进期。

2.jpg

▲图2:1978年-2018年分类型发电设备利用小时数

3.提高全国煤电设备平均利用小时难以做到。

从电源供给侧低碳转型发展规律看,煤电设备利用小时难以提高。约在2012年之后,以风电、光伏为代表的可再生能源发电装机和发电量占比显著提高,同时,在局部地区(如云南、四川)大规模、大容量水电站相继投产,这些地区的煤电设备平均利用小时下降至2000左右。

由于长期以来中国主要以增加煤电装机来解决缺电问题,2011年出现了区域性结构性缺电时,在“电荒”舆论导向下,刺激了发电企业按传统的老路加大了煤电装机力度,使年装机容量增长量达到历史最高点,电力供需矛盾历史性地实现了“由缺电平衡—到紧平衡—再到宽松平衡”的转换,电力设备利用小时整体下降。

再有,在一些电力并不短缺且供热需求大、供热季长地区(如东北),由于发展了大量的可再生能源发电,使新能源消纳困难,同时也使煤电设备平均利用小时进一步降低。此后,政府通过减缓煤电建设的措施、规范可再生能源有序发展措施,鼓励灵活性电源、储能、综合能源服务发展,加上电力需求的自然增长消化了部分电力相对过剩产能,使可再生能源利用率不断提高的同时,电力供需宽松的幅度逐渐下降,煤电利用小时也止跌企稳。

从电力系统运行规律看,煤电设备利用小时降低也是必然趋势。

一方面,随着经济社会的发展阶段的演进和技术进步使电力负荷特性发生了重大变化,如由工业负荷占绝对高比重向第三产业、居民用电负荷比重增加的方向转移,峰谷差进一步拉大,尖峰负荷时间区间变窄,年、季、日负荷特性都发生较大改变。同时,由于离网型可再生能源尤其是光伏发电持续高速增长,使太阳照射时段电力负荷显著下降而日落后负荷急骤增长,新老两条电力日负荷曲线围成的轮廓形似“鸭型曲线”。

另一方面,随着大量的光伏、风电接入电网,其发电的随机性、波动性、间歇性特点使电力供应侧供电特性也发生了重大变化。为保障可再生能源尽可能利用及电网的安全,对灵活性电源的数量和快速调节能力提出了更高要求。燃机发电和抽水蓄能是国际上公认的技术成熟、经济可行、广泛使用的灵活性电源,但由于中国燃气价格高、燃气供应困难,抽水蓄能存在建设步伐慢、电力辅助服务的电价机制不完善等方面困难,装机占比仅为6%左右。与发达国家灵活性电源占比约为30~50%的情况相比有明显差距。相比较而言,煤电承担起灵活性电源的任务是符合中国国情的一种不得已但具必然性的选择。灵活性电源的主要任务就是解决负荷侧与供应侧双双变化后,快速提供电网维持平衡所需的电力(电量)、频率、无功补偿等需求,以保障电力系统安全稳定高质量运行。显然,大部分煤电机组灵活性改造的结果就是进一步降低机组可带负荷下限的能力、进一步提高机组快速加载负荷的能力、进一步提高机组适应电网智能化发展的能力。而这些能力是以降低煤电设备利用率、降低发电效率为代价的。换言之,是通过煤电效率和利用率的降低,换来整体能源电力系统的清洁低碳,安全高效的发展。

4.提高局部地区煤电设备平均利用小时难度很大。

不论从理论分析还是从实践情况看,可再生能源占比高与煤电设备平均利用小时降低具有一致性。图3为全国各省(自治区、直辖市,以下以简称“各省”)煤电利用小时数和可再生能源占比排序。

2.jpg

▲图3:各省(自治区、直辖市)煤电利用小时数和可再生能源占比排序

由于省间电力电量有交换的情况,各省的电力供需平衡的情况也有差别,所以除个别特例(如西藏没有煤电、北京主要是外来电)情况外,从总体趋势看,煤电设备平均利用小时降低趋势与可再生能源占比提高趋势是一致的。

图中可以看出,除西藏自治区外,可再生能源发电占比最高的三个省分别是云南省、四川省、青海省,同时也是煤电利用小时最低的三个省,其中云南1599小时,四川2488小时,青海3156小时。煤电利用小时高于5000小时的3个省依次为河北省5224小时、江西省5178小时、内蒙古自治区5155小时,这几个省对应的可再生能源发电比重均低于20%。湖北可再生能源发电比重与煤电利用率都较高的主要原因是,三峡水电站作为重要的“西电东送”工程绝大部分电能送往湖北以外的七省二市,仅有小量电量在本省消纳。而本省电力供需属紧平衡状态,近来电力资源处于净调入状态(不包括三峡),在高峰用电时段还需要执行有序用电措施,煤电往往成为增发保供电源。

图3只是将各省煤电平均利用小时数多少进行了排序,但没有考虑煤电装机容量大小因素,一些省的煤电利用小时很低但煤电装机容量也不大,即便提高到5500小时对提高全国煤电平均利用小时数分担作用也不大。为此将煤电装机容量因素与利用小时数加权平均后做成各省对全国煤电平均利用小时提高到5500的分担率排序饼状图(见图4)

2.jpg

▲图4:2018年加权平均后的各省分担率排序图

 从图中看出,有8个省的分担率之和超过50%,其中河南、山西、山东、江苏、广东为煤电大省,贵州、云南、辽宁是可再生能源大省和电力相对过剩的东北地区。图5列出了几个典型省的3年煤电利用小时数的变化情况,说明了不同省的煤电利用率具有相对稳定性。

2.jpg

 ▲图5:全国及五个典型省近三年煤电利用小时变化情况

图3、图4、图5表明,煤电设备平均利用率相对最低的地区受资源禀赋、低碳发展要求限制难以提高,提高全国煤电的利用率存在极大挑战。

同时,根据中电联统计,2018年全国6000千瓦及以上电厂热电联产机组装机容量为47601万千瓦,占全国火电装机(114408万千瓦)比重为41.61%,其中大部分为煤电热电联产机组,这些机组利用小时受供电、供热及调峰多重影响设备利用率难以调整(有些机组进行了热电解耦,成为灵活性调节电源)。还有约1.5亿千瓦的自备燃煤电厂是主体产业中的一部分,往往电厂燃料是煤与其他废燃料的混合体,具有综合利用特点,这些机组的设备利用率调整也有很大难度。

从机组结构看,有一部分煤电机组利用率提高是合理可行的。

一是中国拥有世界上数量最多的百万千瓦级超超临界燃煤发电机组(110多台),应当保障这些机组和部分具有相当效率的60万千瓦等级超超临界机组处于高效和高利用率状态。

二是考虑到中国煤炭中还有数亿吨原煤直接散烧,能源效率低、严重污染环境,应当在首选天然气替代、电能替代、生物质能替代、余热利用等各种方式后,将剩余的散煤通过热电联产的方式加以利用,既提高了煤炭利用效率,又降低了碳排放强度、减轻空气污染。不过,一部分煤电机组利用率的提高,会使其余煤电利用率相应下降。

5.提高煤电利用率、保障供电、提高可再生能源发电比重难以同时实现。

假定其他灵活性电源大量接入电力系统,煤电不再承担灵活性电源的任务后,设备平均利用小时仍然难以提高。如美国在2001年至2010年间大规模增加了燃机投运并承担了调峰任务,煤电设备年利用小时均超过6500。但是,在电力需求没有大幅度增加的情景下,这种情况在中国难以大面积实现(除个别地区和个别机组外)。

一是大规模建设燃机、抽水蓄能电站或者在用户侧和电源侧投入大量新型化学或者物理储能设备,不论从经济上还是技术上(化学储能)短期难以实现。

二是当储能大规模建设时,说明技术经济已经可行,具备了从电量、电力两个方面压缩煤电的时机,煤电占比会加速下降,煤电利用小时会发生较大波动和地区分化。如果通过行政或者市场(规则)引导作用确实也能提高煤电设备利用小时,那么,中国出较大范围出现缺电情况是大概率事件,或者是可再生源发电增长和消纳受到严重制约,结构性缺电矛盾突现。

发、输、配、供、用电的瞬时平衡实际是电力的平衡,电量是瞬时负荷变化与对应时间的积分。由于可再生能源尤其是光伏的大量发展,且电网缺乏足够的灵活性电源(包括储能),煤电负荷率变化更加频繁、负荷曲线波动加大,因此,仅通过实际煤电设备利率与5500小时相比得出还有1000小时空间是不科学的,实际上也无法实现。综上分析,煤电利用率提高、保障供电、可再生能源发电比重提高这三者之间存在制约关系且3个目标难以同时实现。

版权声明:本网注明来源为“国际环保在线”的文字、图片内容,版权均属本站所有,如若转载,请注明本文出处:http://www.huanbao-world.com 。同时本网转载内容仅为传播资讯,不代表本网观点。如涉及作品内容、版权和其它问题,请与本网站联系,我们将在第一时间删除内容。

首页 | 资讯 | 水务 | 大气 | 固废 | 绿色发展 | 自然资源 | 企业 | 环保展会 | 国际资讯

电脑版 | 移动版 | 联系我们

Copyright © 2017-2019 国际环保在线 版权所有
 粤ICP备17138624号-1